85 research outputs found

    Microstructures to control elasticity in 3D printing

    Get PDF
    We propose a method for fabricating deformable objects with spatially varying elasticity using 3D printing. Using a single, relatively stiff printer material, our method designs an assembly of small-scale microstructures that have the effect of a softer material at the object scale, with properties depending on the microstructure used in each part of the object. We build on work in the area of metamaterials, using numerical optimization to design tiled microstructures with desired properties, but with the key difference that our method designs families of related structures that can be interpolated to smoothly vary the material properties over a wide range. To create an object with spatially varying elastic properties, we tile the object's interior with microstructures drawn from these families, generating a different microstructure for each cell using an efficient algorithm to select compatible structures for neighboring cells. We show results computed for both 2D and 3D objects, validating several 2D and 3D printed structures using standard material tests as well as demonstrating various example applications

    A radiative transfer framework for non-exponential media

    Get PDF
    We develop a new theory of volumetric light transport for media with non-exponential free-flight distributions. Recent insights from atmospheric sciences and neutron transport demonstrate that such distributions arise in the presence of correlated scatterers, which are naturally produced by processes such as cloud condensation and fractal-pattern formation. Our theory accommodates correlations by disentangling the concepts of the free-flight distribution and transmittance, which are equivalent when scatterers are statistically independent, but become distinct when correlations are present. Our theory results in a generalized path integral which allows us to handle non-exponential media using the full range of Monte Carlo rendering algorithms while enriching the range of achievable appearance. We propose parametric models for controlling the statistical correlations by leveraging work on stochastic processes, and we develop a method to combine such unresolved correlations (and the resulting non-exponential free-flight behavior) with explicitly modeled macroscopic heterogeneity. This provides a powerful authoring approach where artists can freely design the shape of the attenuation profile separately from the macroscopic heterogeneous density, while our theory provides a physically consistent interpretation in terms of a path space integral. We address important considerations for graphics including energy conservation, reciprocity, and bidirectional rendering algorithms, all in the presence of surfaces and correlated media

    Coupled 3D reconstruction of sparse facial hair and skin

    Get PDF

    Modeling and estimation of internal friction in cloth

    Get PDF
    Force-deformation measurements of cloth exhibit significant hysteresis, and many researchers have identified internal friction as the source of this effect. However, it has not been incorporated into computer animation models of cloth. In this paper, we propose a model of internal friction based on an augmented reparameterization of Dahl's model, and we show that this model provides a good match to several important features of cloth hysteresis even with a minimal set of parameters. We also propose novel parameter estimation procedures that are based on simple and inexpensive setups and need only sparse data, as opposed to the complex hardware and dense data acquisition of previous methods. Finally, we provide an algorithm for the efficient simulation of internal friction, and we demonstrate it on simulation examples that show disparate behavior with and without internal friction

    Microstructures to control elasticity in 3D printing

    Get PDF
    We propose a method for fabricating deformable objects with spatially varying elasticity using 3D printing. Using a single, relatively stiff printer material, our method designs an assembly of small-scale microstructures that have the effect of a softer material at the object scale, with properties depending on the microstructure used in each part of the object. We build on work in the area of metamaterials, using numerical optimization to design tiled microstructures with desired properties, but with the key difference that our method designs families of related structures that can be interpolated to smoothly vary the material properties over a wide range. To create an object with spatially varying elastic properties, we tile the object's interior with microstructures drawn from these families, generating a different microstructure for each cell using an efficient algorithm to select compatible structures for neighboring cells. We show results computed for both 2D and 3D objects, validating several 2D and 3D printed structures using standard material tests as well as demonstrating various example applications

    Fundamentals of computer graphics

    No full text
    corecore